
 Journal of Management and Service Science, 2022,
 Vol. 02, Iss. 01, S. No. 006, pp. 1-7
 ISSN (Online): 2583-1798

ISSN (Online) : 2583-1798 1
Journal of Management and Service Science

(JMSS)
A2Z Journals, Devarya Education and Publications

Study of Language Models: Evolution &
Limitations

Aayush Kumar Gupta1, Sheenu Rizvi2

Amity School of Engineering and technology, Amity University, Lucknow, India1,2
aayush8423@gmail.com1, sheenu_r@hotmail.com2

How to cite this paper: A. A. Gupta and S.
Rizvi, “Study of Language Models: Evolution
& Limitations,” Journal of Management and
Service Science, Vol. 02, Iss. 01, S. No. 006,
pp. 1–7, 2022.

http://doi.org/10.54060/JMSS/002.01.006

Received: 01/01/2022
Accepted: 15/02/2022
Published: 25/03/2022

Copyright © 2022The Author(s).
This work is licensed under the Creative
Commons Attribution International License
(CC BY 4.0).
http://creativecommons.org/licenses/by/4.0
/

 Abstract

We have come far from the days when rule-based language models used to be the predomi-
nant thing in the market. Machine Learning came into play and changed the Language Model
industry. In this paper, we will look at how RNN did a much better task for generating output
based on its previous results and then how LSTM fulfilled the memory requirement for RNN.
Also, we will take a look at how Transformer is much better than RNN combined with LSTM,
which is the state-of-the-art language model on which the two best natural processing models
like BERT and GPT3.

Keywords

Language Models, Rule-based, Statistical-based, RNN, LSTM, Attention, Transformer

1. Introduction

The language model is a probability distribution over words or words in a sequence. Language models do not interpret the

meaning of the words in the sentence as a human does. Language Model predicts the probability of the words that will be

likely to appear next. Commonly people misinterpret whenever language models get better than their previous generation to

the advent of consciousness. But reaching the level of the singularity isn’t that close if the language models can only chat

with you by predicting the probability of the next word in the sentence. A trained language model can predict the next word

based on the previous word; this is a common model in the Google keyboard. But when we start to add memory to this mod-

el things start to get pretty exciting. The model can now predict the probability of the next word by now scanning the previ-

ous context making it better. But as the memory is increased the processing gets slower and the output becomes costlier

such as GPT-3 has four different models depending upon the cost, speed, and quality of the text processing. So, in summary,

language models based on Deep Learning are more of an advanced probabilistic word predicting machine that does not un-

derstand the meaning of the words in a grammatical context like a human does.

Open Access

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A. A. Gupta, S. Rizvi

ISSN (Online) : 2583-1798 2
Journal of Management and Service Science

(JMSS)
A2Z Journals, Devarya Education and Publications

1.1. Coherence and Long-range Dependencies

All the natural language models require a huge corpus for a dataset. The bigger the corpus for the data set the better the

model is trained. But the quality of the output from the language model is determined when the model can be in coherence

with its previous context. Let’s see how complicated it can get when we try to make our natural language model be in co-

herence with long-range dependencies. So, whenever the language models try to keep the previous words in the memory it

becomes much more computationally expensive. For example, we have a word context of a thousand words, then to predict

the next word we have to keep those thousand words in say a probability distribution for the prediction, and to predict the

next words it has to keep all the processing of the previous words making the computation to grow exponentially. That is why

the earlier language model where memory sequence was the main method for generating the coherence with the words

does not seem to work when it has looked back at 100 words thereby losing the overall context.

2. Language Model

Initially, as we step into the Natural Language Processing Models, we can predict the text with the help of supervised learning

algorithms where we don't require any kind of structured prediction or sequence prediction. These supervised learning mod-

els can be used to do fairly any straightforward task such as classifying whether a document is spam or not.

This also means that we have to take our document as a fixed size vector for the machine to learn. The problem in that case

in each document is of variable length and to solve this problem and make it meaningful input to our machine we have con-

verted it into a fixed-size vector.

2.1. Bag of Words

The classic way of solving this problem is the bag of words solution where we have one dimension per word in our vocabu-

lary. In English, vocabulary supposes 100,000 words can be used to create our vector. So, when most of the words apart from

the word we cross through will be zero. But this will lead to sparse data and storing zeros will become computationally very

expensive. So, we generally store the list of position value tuples of the words or maybe just a list of positions and that be-

comes a great solution to our computationally expensive problem.

But the key limitation to this problem is that the orders do not matter to this model. In the document, the order of the

words is very important for its classification. For example, we have different sentences such as “work to live” and “live to

work” both have different separate meanings. But the bag of words model will always score them identically each time be-

cause they have the same vectors for the words that are present. All these methods lead to a rise in the "statistical revolu-

tion"[1].

2.2. N-gram

Now, the solution to this problem is the N-gram model where you can have bigrams for the pair of two words and then tri-

grams for pairs of three words. The Dimensionality for these N-grams can be determined by V^N where V is the vocabulary

vector and N is the Number of vectors together. So, in an English Trigram, it will require to have 10^15 dimensions which are

humongous for any machine to process.

Increasingly, research has focused on statistical models, which make soft, probabilistic decisions based on attaching re-

al-valued weights to each input feature (complex-valued embeddings, and neural networks in general have also been pro-

posed, for e.g. speech [2]). Since 2015,[3] the field has thus largely abandoned statistical methods and shifted to neural net-

works for machine learning [8].

 A. A. Gupta, S. Rizvi

ISSN (Online) : 2583-1798 3
Journal of Management and Service Science

(JMSS)
A2Z Journals, Devarya Education and Publications

2.3. Recurrent Neural Network

For the solution to the high dimensionality pairs, we have got the Recurrent Neural Networks. The way the RNN solves the

previous problem is through an input function that continuously takes the feedback from the output at every stage. In other

words, it takes the input from some document and input from itself which will be used to generate the output. It can be visu-

alized as a deep neural network that is processing each input along the way.

The Problem with the normal Recurrent Neural Network is the vanishing and the exploding gradients. As the Recurrent

Neural Network is made of many states of hidden layers that help to balance the weight and biases to train the model also

imposes the problem of the vanishing gradient.

2.3.1. Recurrent Neural Network

The Hidden Layers are the secret sauce of the neural network. They help the neural network to model complex data with the

help of the neurons. We can never know what goes inside the hidden layer. We only supply the input data to the input layer

and then the hidden layer does the processing of the data and then maps it to the output layer. Every neural network has at

least one hidden layer or it’s not a neural network. The neural network that has multiple hidden layers is called the deep

neural network. Commonly the hidden layer is fully connected meaning that each neuron in an individual layer is connected

to every other neuron in the adjacent two later.

Neurons are the building block of any network. Every neuron is associated with all the neurons from its adjacent previ-

ous layer with weights. So, each neuron sums all the weights as per the activation of previous layer neurons and then passes

it through an activation function. The activation function is similar to the buffer for each signal to pass. Mostly the activation

functions are sigmoid functions where the outputs are limited to the value between zero and one. This way the value of any

neuron which sums up the weights as per activation does not either become exponentially large or negative. The sigmoid

function thus can give the values that act as the knob for activation of the particular neuron. For example, if the value is clos-

er to one then it means the neurons are actively lit and show greater association to the layer from which the weights are

coming, and a similar case follows with the values that are closer to zero. Neural Networks can achieve state-of-the-art re-

sults in many natural language tasks, e.g., in language modeling and parsing.[4][5].

2.3.2. Cost Function

The way we train the Recurrent Neural Network is by minimizing the cost function. The cost function is the mean of the

squared difference between our actual output and the predicted output. The cost function is the method through which we

can say to our neural network that it has generated a bad result. If the generated output is away from the actual output then

the cost function will be higher. And if the generated output is closer to our actual output it will be minimum. As the cost

function is algebraic, therefore we can global minima of the function with the help of gradient descent [7].

2.3.3. Gradient Descent

The gradient descent is the method through which we find the slope of the function at any given random value. For example,

there is a very simple function.

Example, ax2 + by2

Then we can put any random values of x and y and from there we can determine the slope of that point on the function.

If the slope that we determined at the random location (x, y) comes out to be positive then the gradient descent will move

A. A. Gupta, S. Rizvi

ISSN (Online) : 2583-1798 4
Journal of Management and Service Science

(JMSS)
A2Z Journals, Devarya Education and Publications

steps downhill and if the slope of the random location comes out to be negative then the gradient descent will move steps

uphill. We can consider the gradient descent function for even three dimensions where we can plot two dimensions as input

and one dimension as output which will be more realistic to the Recurrent Neural Networks where two inputs are given to

the neural network and one output is generated.

Now back to our gradient descent we have seen how it is determined to go uphill or downhill depending upon the slope

generated at random steps. When we plot the graph of gradient descent it will seem to have a ball-like motion. It is because

gradient descent is trying to reduce the number of steps taken. The gradient descent takes huge steps when the slope is

steep and small steps when the slope is flat. Because when the slope is steep it is far away from the local minima and when

the slope is flat it seems to approach the local minima and thereby reducing the cost function. So, the gradient descent will

carefully take small steps whenever it starts to reach the local minima of the cost function, that is how it will reduce the cost

function and thereby train the complete network for better results [6].

The gradient is calculated for the complete input batch at once therefore whenever the inputs are fed into the function

of the network, the network will then go to minimize the cost by analyzing then reiterating every time until the predicted

output is the same as the actual output.

2.3.4. Stochastic Gradient Descent

As we see in the gradient descent, the gradient will only be calculated once it has processed all the inputs only. Then the gra-

dient will then be used for comparison between the predicted and the actual value and the difference will determine the

balancing of the weights and the biases.

But in the stochastic gradient descent, the gradient will be calculated at every input. Therefore, as the gradient is re-

quired for calculating the cost function and then balancing the weights in the network that is why stochastic gradient descent

will provide us with faster results as gradient descent is calculated at every input.

2.3.4. Backpropagation

As we know that our neural network is made of layers of neurons. We have already seen that the neural network is made of

many hidden layers between the input layer and the output layer. Each layer is made of many neurons. These neurons get

activated depending upon the weights & biases that the previous hidden or input layer carries and also if the previous neuron

is activated or not.

The main work of backpropagation is adjusting the weights and the biases of each neuron depending upon the output

layer result and the cost function. When it has been determined that the cost function is not up to the mark it will nudge al l

the weights and biases of the neuron within the layers of the network. When the pattern is formed between the input layer,

hidden layers, and the output layer then the backpropagation will provide the biggest increase to the weight or biggest

strengthening of connections with the neurons that are most active and the neurons that we wish to become more active.

Backpropagation is analogous to the neuroscience Hebbian Theory which states that “Neurons that fire together, wires to-

gether.”

Therefore, the backpropagation can influence the neural network either through weights or biases. For example, while

determining the next word depending upon the previous word, the neuron containing the previous word which is closely

related to the next word will increase the weight associated with the particular neuron will increase and this will repeat to all

of the previous layers. As the activation of the neuron is determined by sigmoid function therefore it will also result in a

greater activation value of the neurons.

Therefore, the neurons are nudged depending upon the proportion of the corresponding weights and in proportion to

 A. A. Gupta, S. Rizvi

ISSN (Online) : 2583-1798 5
Journal of Management and Service Science

(JMSS)
A2Z Journals, Devarya Education and Publications

how much those neurons need to change and this what the idea behind propagating backward. By adding all the desired re-

sults, we get the list of all the nudges that we want to happen from the second to the last layer.

2.4. Long short-term memory

The problem with the Recurrent Neural Network was that in multiple layered neural networks when the activation function

such as sigmoid was used they squished the inputs it received to only 0 and 1. This made it hard for the neural network to

learn.

As it makes it more difficult to adjust the weight during the time of backpropagation as when the activation function

output value is near zero or zero then adding or multiplying the learning rate will have negligible to no effect.

There is a great analogy to this problem: suppose student A is not able to attend the school for a week and student A asks his

friend student B to keep him updated. As student B is busy after classes, student B transfers his learning (70 percent of what

was originally taught) to student C (a mutual friend of student A and student B) to transfer it to student A. Now student C

transfers his 70 percent of retention of the learning to student A. Now, student A learning becomes (70 percent of student C

* (70 percent of student B)) = 0.49 of the original teaching. This is similar to how the backpropagation gradient vanishes due

to the sigmoid squashing effect.

There were some solutions for solving the vanishing gradient problem such as ResNet and ReLu. But LSTM (Long

Short-Term Memory) showed the greatest enhancement to the RNN vanishing gradient problem.

The LSTM solved the problem of the vanishing gradient by adding some matrix multiplier to the activation function. The

LSTM vector has two more hidden states that are constantly learning. Instead of the network remembering all the words, the

LSTM creates a vector that is the result of the input of the previous vector and the new word. This is how LSTM was solving

the vanishing gradient problem.

The Limitation of the LSTM was that it was difficult to train because the LSTM has a very long gradient path, for exam-

ple, 100-word text can have a 100-layer network. The training for the LSTM network was serial as it requires the vector from

the previous LSTM cell and word to be trained.

2.5. Transformer

The latest revolution in the natural language processing space after the Recurrent Neural Network was the transformers. To

date, the transformer is predominant with various other variants being added to it. Like two most trained transformers exist

and are BERT (Bidirectional Encoder Representations and Transformers) and GPT3 (Generative Pre-Trained Transformer 3).

These both are the state-of-the-art natural language processing model containing billions of parameters for natural language

processing. There are even AI companions that have been developed such as Replica which can produce a human conversa-

tion that is based on the GPT3 Model by OpenAI.

2.6. Attention

The Transformer gained popularity when it was mentioned in the paper “Attention is what you need”. As described in the

paper, the attention model worked with a query, key, and relevancy vector. For every output, we are considering a query

vector and for every input, we are considering a key vector and the relevance score is the dot product of those vectors. And

then we normalize the output vector by the softmax function. The relevance of the output words is calculated by the product

of the query and the key.

In the attention model, we use the key and query token as the input, and then we produce these vectors which then

A. A. Gupta, S. Rizvi

ISSN (Online) : 2583-1798 6
Journal of Management and Service Science

(JMSS)
A2Z Journals, Devarya Education and Publications

result in the relevancy of the output. Now to generate the output for the next layer we simply multiply the softmax of the

relevancy vector by the value that we receive from the previous layer of the network.

2.6.1. Multi-headed Attention

Multi-headed attention is the architecture that is used in the transformers to learn different semantic meanings for the same

context. We have to repeat the same process of finding the relevance and the output of the query and the key vector with

different values of the query, key, and value vector that we have passed the previous time.

So, in the context of translation, we can create different multi-head attention models for grammar, vocabulary, etc. The

model can look in the document for different purposes which makes this model much more flexible for processing sequences

of corpus text.

2.7. Potential Encoding

Without the positional encoding, the transformer attention model is the bag of word models. In the input layer of the atten-

tion model, the input layer is created by adding the word embedding (e.g., word2vec) and a position embedding which then

can be passed to a multi-headed attention model. This lets the model reason the relative position of any token. That is the

reason the attention model differs from the bag of word models.

2.8. Transformer and Recurrent Neural Network

The key advantage of transformers is that they are completely parallel. This means that with the help of a high spec GPU we

can perform these operations literally at a pace that we had not imagined earlier. As in the case with RNN, we cannot do the

parallel operation because if one token is busy operating then we have to require the same token for the next processing

phase. That is why RNN, despite being a revolution in natural language processing, did not succeed as the convolutional neu-

ral network in computer vision.

Also, the other problem which we faced in RNN was with the activation function that was sigmoid and tanh activation. It

means that the neural network can only be trained with binary input in the neural network layer. This also means that we can

be stuck in the problem of inefficient learning with backpropagation. The transformer utilized the ReLu activation function,

which is a similar activation to sigmoid but its value can be scaled to infinity which means that now the activation function

can express itself on the scale of zero to infinity rather than being binary values.

Conclusion

Natural Language Processing has come a long way from a simple text translation George time experiment in 1954 to the cur-

rent where the development of Deep Neural networks is capable of making autonomous decisions. We have gone through

how Natural Language Processing evolved from just a rule-based method to utilizing statistics using machines and then de-

veloping Neural Networks for training itself on the labeled data to produce state of the art results.

The Natural language Processing algorithms have also gone through regress improvement. We have looked at how sta-

tistical algorithms such as a bag of words and N-gram have been substituted by the word2vec algorithm. And now with the

development of neural networks, newer algorithms are replacing and modifying the old ones such as gradient descent has

been replaced by stochastic gradient descent, and also the inclusion of LSTM to work with the RNN networks for better

memory. The significant leap in the Natural Language model came when the Neural Network started using the Transformer

architecture from the paper “Attention is all you need”. This paper is the hallmark of this decade in the NLP field.

After the Transformer came into the picture many giants like Google, Facebook, openAI, and many more started their

 A. A. Gupta, S. Rizvi

ISSN (Online) : 2583-1798 7
Journal of Management and Service Science

(JMSS)
A2Z Journals, Devarya Education and Publications

model development resulting in many NLP Transformer models currently used in industry such as BERT, GPT, XLNET, ALBERT,

and many more. Now the Natural Language Processing models are heading toward cognition to emulate the intelligent be-

havioral pattern and comprehensions in the NLP. More work is put into developing the cognitive ability of machines that can

parallel the human mind. It will be interesting to observe what the Natural Language Processing Model holds for the future.

References

[1] M. Johnson, “How the statistical revolution changes (computational) linguistics,” in Proceedings of the EACL 2009 Workshop on the

Interaction between Linguistics and Computational Linguistics Virtuous, Vicious or Vacuous? - ILCL ’09, 2009.

[2] S. Kumar et al., “Novel method for safeguarding personal health record in cloud connection using deep learning models,” Comput.

Intell. Neurosci., vol. 2022, no. 3564436, pp. 1-14, 2022.

[3] M. Trabelsi, P. Kakosimos and H. Komurcugil, "Mitigation of grid voltage disturbances using quasi-Z-source based dynamic voltage

restorer," 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG

2018), 2018, pp. 1-6, doi: 10.1109/CPE.2018.8372574.

[4] S. Kumar, P. K. Srivastava, G. K. Srivastava, P. Singhal, D. Singh, and D. Goyal, “Chaos based image encryption security in cloud compu-

ting,” J. Discrete Math. Sci. Cryptogr., pp. 1–11, 2022.

[5] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, “Exploring the limits of Language Modeling,” arXiv [cs.CL], 2016.

[6] S. Kumar et al., “Protecting location privacy in cloud services,” J. Discrete Math. Sci. Cryptogr., pp. 1–10, 2022.

[7] D. K. Choe and E. Charniak, “Parsing as language modeling,” in Proceedings of the 2016 Conference on Empirical Methods in Natural

Language Processing, 2016.

[8] Iop.org. [Online]. Available: https://iopscience.iop.org/article/10.1149/10701.15533ecst/meta. [Accessed: 23-Jul-2022].

